progress on migrating to heex templates and font-icons

This commit is contained in:
Adam Piontek 2022-08-13 07:32:36 -04:00
parent d43daafdb7
commit 3eff955672
21793 changed files with 2161968 additions and 16895 deletions

21
assets_old/node_modules/regenerator-transform/LICENSE generated vendored Normal file
View file

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2014-present, Facebook, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View file

@ -0,0 +1,46 @@
# regenerator-transform
Transform async/generator functions with [regenerator](https://github.com/facebook/regenerator)
## Installation
```sh
$ npm install regenerator-transform
```
## Usage
### Via `.babelrc` (Recommended)
**.babelrc**
```js
// without options
{
"plugins": ["regenerator-transform"]
}
// with options
{
"plugins": [
["regenerator-transform", {
asyncGenerators: false, // true by default
generators: false, // true by default
async: false // true by default
}]
]
}
```
### Via CLI
```sh
$ babel --plugins regenerator-transform script.js
```
### Via Node API
```javascript
require("@babel/core").transformSync("code", {
plugins: ["regenerator-transform"]
});
```

View file

@ -0,0 +1,959 @@
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var leap = _interopRequireWildcard(require("./leap"));
var meta = _interopRequireWildcard(require("./meta"));
var util = _interopRequireWildcard(require("./util"));
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var hasOwn = Object.prototype.hasOwnProperty;
function Emitter(contextId) {
_assert["default"].ok(this instanceof Emitter);
util.getTypes().assertIdentifier(contextId); // Used to generate unique temporary names.
this.nextTempId = 0; // In order to make sure the context object does not collide with
// anything in the local scope, we might have to rename it, so we
// refer to it symbolically instead of just assuming that it will be
// called "context".
this.contextId = contextId; // An append-only list of Statements that grows each time this.emit is
// called.
this.listing = []; // A sparse array whose keys correspond to locations in this.listing
// that have been marked as branch/jump targets.
this.marked = [true];
this.insertedLocs = new Set(); // The last location will be marked when this.getDispatchLoop is
// called.
this.finalLoc = this.loc(); // A list of all leap.TryEntry statements emitted.
this.tryEntries = []; // Each time we evaluate the body of a loop, we tell this.leapManager
// to enter a nested loop context that determines the meaning of break
// and continue statements therein.
this.leapManager = new leap.LeapManager(this);
}
var Ep = Emitter.prototype;
exports.Emitter = Emitter; // Offsets into this.listing that could be used as targets for branches or
// jumps are represented as numeric Literal nodes. This representation has
// the amazingly convenient benefit of allowing the exact value of the
// location to be determined at any time, even after generating code that
// refers to the location.
Ep.loc = function () {
var l = util.getTypes().numericLiteral(-1);
this.insertedLocs.add(l);
return l;
};
Ep.getInsertedLocs = function () {
return this.insertedLocs;
};
Ep.getContextId = function () {
return util.getTypes().clone(this.contextId);
}; // Sets the exact value of the given location to the offset of the next
// Statement emitted.
Ep.mark = function (loc) {
util.getTypes().assertLiteral(loc);
var index = this.listing.length;
if (loc.value === -1) {
loc.value = index;
} else {
// Locations can be marked redundantly, but their values cannot change
// once set the first time.
_assert["default"].strictEqual(loc.value, index);
}
this.marked[index] = true;
return loc;
};
Ep.emit = function (node) {
var t = util.getTypes();
if (t.isExpression(node)) {
node = t.expressionStatement(node);
}
t.assertStatement(node);
this.listing.push(node);
}; // Shorthand for emitting assignment statements. This will come in handy
// for assignments to temporary variables.
Ep.emitAssign = function (lhs, rhs) {
this.emit(this.assign(lhs, rhs));
return lhs;
}; // Shorthand for an assignment statement.
Ep.assign = function (lhs, rhs) {
var t = util.getTypes();
return t.expressionStatement(t.assignmentExpression("=", t.cloneDeep(lhs), rhs));
}; // Convenience function for generating expressions like context.next,
// context.sent, and context.rval.
Ep.contextProperty = function (name, computed) {
var t = util.getTypes();
return t.memberExpression(this.getContextId(), computed ? t.stringLiteral(name) : t.identifier(name), !!computed);
}; // Shorthand for setting context.rval and jumping to `context.stop()`.
Ep.stop = function (rval) {
if (rval) {
this.setReturnValue(rval);
}
this.jump(this.finalLoc);
};
Ep.setReturnValue = function (valuePath) {
util.getTypes().assertExpression(valuePath.value);
this.emitAssign(this.contextProperty("rval"), this.explodeExpression(valuePath));
};
Ep.clearPendingException = function (tryLoc, assignee) {
var t = util.getTypes();
t.assertLiteral(tryLoc);
var catchCall = t.callExpression(this.contextProperty("catch", true), [t.clone(tryLoc)]);
if (assignee) {
this.emitAssign(assignee, catchCall);
} else {
this.emit(catchCall);
}
}; // Emits code for an unconditional jump to the given location, even if the
// exact value of the location is not yet known.
Ep.jump = function (toLoc) {
this.emitAssign(this.contextProperty("next"), toLoc);
this.emit(util.getTypes().breakStatement());
}; // Conditional jump.
Ep.jumpIf = function (test, toLoc) {
var t = util.getTypes();
t.assertExpression(test);
t.assertLiteral(toLoc);
this.emit(t.ifStatement(test, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));
}; // Conditional jump, with the condition negated.
Ep.jumpIfNot = function (test, toLoc) {
var t = util.getTypes();
t.assertExpression(test);
t.assertLiteral(toLoc);
var negatedTest;
if (t.isUnaryExpression(test) && test.operator === "!") {
// Avoid double negation.
negatedTest = test.argument;
} else {
negatedTest = t.unaryExpression("!", test);
}
this.emit(t.ifStatement(negatedTest, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));
}; // Returns a unique MemberExpression that can be used to store and
// retrieve temporary values. Since the object of the member expression is
// the context object, which is presumed to coexist peacefully with all
// other local variables, and since we just increment `nextTempId`
// monotonically, uniqueness is assured.
Ep.makeTempVar = function () {
return this.contextProperty("t" + this.nextTempId++);
};
Ep.getContextFunction = function (id) {
var t = util.getTypes();
return t.functionExpression(id || null
/*Anonymous*/
, [this.getContextId()], t.blockStatement([this.getDispatchLoop()]), false, // Not a generator anymore!
false // Nor an expression.
);
}; // Turns this.listing into a loop of the form
//
// while (1) switch (context.next) {
// case 0:
// ...
// case n:
// return context.stop();
// }
//
// Each marked location in this.listing will correspond to one generated
// case statement.
Ep.getDispatchLoop = function () {
var self = this;
var t = util.getTypes();
var cases = [];
var current; // If we encounter a break, continue, or return statement in a switch
// case, we can skip the rest of the statements until the next case.
var alreadyEnded = false;
self.listing.forEach(function (stmt, i) {
if (self.marked.hasOwnProperty(i)) {
cases.push(t.switchCase(t.numericLiteral(i), current = []));
alreadyEnded = false;
}
if (!alreadyEnded) {
current.push(stmt);
if (t.isCompletionStatement(stmt)) alreadyEnded = true;
}
}); // Now that we know how many statements there will be in this.listing,
// we can finally resolve this.finalLoc.value.
this.finalLoc.value = this.listing.length;
cases.push(t.switchCase(this.finalLoc, [// Intentionally fall through to the "end" case...
]), // So that the runtime can jump to the final location without having
// to know its offset, we provide the "end" case as a synonym.
t.switchCase(t.stringLiteral("end"), [// This will check/clear both context.thrown and context.rval.
t.returnStatement(t.callExpression(this.contextProperty("stop"), []))]));
return t.whileStatement(t.numericLiteral(1), t.switchStatement(t.assignmentExpression("=", this.contextProperty("prev"), this.contextProperty("next")), cases));
};
Ep.getTryLocsList = function () {
if (this.tryEntries.length === 0) {
// To avoid adding a needless [] to the majority of runtime.wrap
// argument lists, force the caller to handle this case specially.
return null;
}
var t = util.getTypes();
var lastLocValue = 0;
return t.arrayExpression(this.tryEntries.map(function (tryEntry) {
var thisLocValue = tryEntry.firstLoc.value;
_assert["default"].ok(thisLocValue >= lastLocValue, "try entries out of order");
lastLocValue = thisLocValue;
var ce = tryEntry.catchEntry;
var fe = tryEntry.finallyEntry;
var locs = [tryEntry.firstLoc, // The null here makes a hole in the array.
ce ? ce.firstLoc : null];
if (fe) {
locs[2] = fe.firstLoc;
locs[3] = fe.afterLoc;
}
return t.arrayExpression(locs.map(function (loc) {
return loc && t.clone(loc);
}));
}));
}; // All side effects must be realized in order.
// If any subexpression harbors a leap, all subexpressions must be
// neutered of side effects.
// No destructive modification of AST nodes.
Ep.explode = function (path, ignoreResult) {
var t = util.getTypes();
var node = path.node;
var self = this;
t.assertNode(node);
if (t.isDeclaration(node)) throw getDeclError(node);
if (t.isStatement(node)) return self.explodeStatement(path);
if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult);
switch (node.type) {
case "Program":
return path.get("body").map(self.explodeStatement, self);
case "VariableDeclarator":
throw getDeclError(node);
// These node types should be handled by their parent nodes
// (ObjectExpression, SwitchStatement, and TryStatement, respectively).
case "Property":
case "SwitchCase":
case "CatchClause":
throw new Error(node.type + " nodes should be handled by their parents");
default:
throw new Error("unknown Node of type " + JSON.stringify(node.type));
}
};
function getDeclError(node) {
return new Error("all declarations should have been transformed into " + "assignments before the Exploder began its work: " + JSON.stringify(node));
}
Ep.explodeStatement = function (path, labelId) {
var t = util.getTypes();
var stmt = path.node;
var self = this;
var before, after, head;
t.assertStatement(stmt);
if (labelId) {
t.assertIdentifier(labelId);
} else {
labelId = null;
} // Explode BlockStatement nodes even if they do not contain a yield,
// because we don't want or need the curly braces.
if (t.isBlockStatement(stmt)) {
path.get("body").forEach(function (path) {
self.explodeStatement(path);
});
return;
}
if (!meta.containsLeap(stmt)) {
// Technically we should be able to avoid emitting the statement
// altogether if !meta.hasSideEffects(stmt), but that leads to
// confusing generated code (for instance, `while (true) {}` just
// disappears) and is probably a more appropriate job for a dedicated
// dead code elimination pass.
self.emit(stmt);
return;
}
switch (stmt.type) {
case "ExpressionStatement":
self.explodeExpression(path.get("expression"), true);
break;
case "LabeledStatement":
after = this.loc(); // Did you know you can break from any labeled block statement or
// control structure? Well, you can! Note: when a labeled loop is
// encountered, the leap.LabeledEntry created here will immediately
// enclose a leap.LoopEntry on the leap manager's stack, and both
// entries will have the same label. Though this works just fine, it
// may seem a bit redundant. In theory, we could check here to
// determine if stmt knows how to handle its own label; for example,
// stmt happens to be a WhileStatement and so we know it's going to
// establish its own LoopEntry when we explode it (below). Then this
// LabeledEntry would be unnecessary. Alternatively, we might be
// tempted not to pass stmt.label down into self.explodeStatement,
// because we've handled the label here, but that's a mistake because
// labeled loops may contain labeled continue statements, which is not
// something we can handle in this generic case. All in all, I think a
// little redundancy greatly simplifies the logic of this case, since
// it's clear that we handle all possible LabeledStatements correctly
// here, regardless of whether they interact with the leap manager
// themselves. Also remember that labels and break/continue-to-label
// statements are rare, and all of this logic happens at transform
// time, so it has no additional runtime cost.
self.leapManager.withEntry(new leap.LabeledEntry(after, stmt.label), function () {
self.explodeStatement(path.get("body"), stmt.label);
});
self.mark(after);
break;
case "WhileStatement":
before = this.loc();
after = this.loc();
self.mark(before);
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
self.leapManager.withEntry(new leap.LoopEntry(after, before, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.jump(before);
self.mark(after);
break;
case "DoWhileStatement":
var first = this.loc();
var test = this.loc();
after = this.loc();
self.mark(first);
self.leapManager.withEntry(new leap.LoopEntry(after, test, labelId), function () {
self.explode(path.get("body"));
});
self.mark(test);
self.jumpIf(self.explodeExpression(path.get("test")), first);
self.mark(after);
break;
case "ForStatement":
head = this.loc();
var update = this.loc();
after = this.loc();
if (stmt.init) {
// We pass true here to indicate that if stmt.init is an expression
// then we do not care about its result.
self.explode(path.get("init"), true);
}
self.mark(head);
if (stmt.test) {
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
} else {// No test means continue unconditionally.
}
self.leapManager.withEntry(new leap.LoopEntry(after, update, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.mark(update);
if (stmt.update) {
// We pass true here to indicate that if stmt.update is an
// expression then we do not care about its result.
self.explode(path.get("update"), true);
}
self.jump(head);
self.mark(after);
break;
case "TypeCastExpression":
return self.explodeExpression(path.get("expression"));
case "ForInStatement":
head = this.loc();
after = this.loc();
var keyIterNextFn = self.makeTempVar();
self.emitAssign(keyIterNextFn, t.callExpression(util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))]));
self.mark(head);
var keyInfoTmpVar = self.makeTempVar();
self.jumpIf(t.memberExpression(t.assignmentExpression("=", keyInfoTmpVar, t.callExpression(t.cloneDeep(keyIterNextFn), [])), t.identifier("done"), false), after);
self.emitAssign(stmt.left, t.memberExpression(t.cloneDeep(keyInfoTmpVar), t.identifier("value"), false));
self.leapManager.withEntry(new leap.LoopEntry(after, head, labelId), function () {
self.explodeStatement(path.get("body"));
});
self.jump(head);
self.mark(after);
break;
case "BreakStatement":
self.emitAbruptCompletion({
type: "break",
target: self.leapManager.getBreakLoc(stmt.label)
});
break;
case "ContinueStatement":
self.emitAbruptCompletion({
type: "continue",
target: self.leapManager.getContinueLoc(stmt.label)
});
break;
case "SwitchStatement":
// Always save the discriminant into a temporary variable in case the
// test expressions overwrite values like context.sent.
var disc = self.emitAssign(self.makeTempVar(), self.explodeExpression(path.get("discriminant")));
after = this.loc();
var defaultLoc = this.loc();
var condition = defaultLoc;
var caseLocs = []; // If there are no cases, .cases might be undefined.
var cases = stmt.cases || [];
for (var i = cases.length - 1; i >= 0; --i) {
var c = cases[i];
t.assertSwitchCase(c);
if (c.test) {
condition = t.conditionalExpression(t.binaryExpression("===", t.cloneDeep(disc), c.test), caseLocs[i] = this.loc(), condition);
} else {
caseLocs[i] = defaultLoc;
}
}
var discriminant = path.get("discriminant");
util.replaceWithOrRemove(discriminant, condition);
self.jump(self.explodeExpression(discriminant));
self.leapManager.withEntry(new leap.SwitchEntry(after), function () {
path.get("cases").forEach(function (casePath) {
var i = casePath.key;
self.mark(caseLocs[i]);
casePath.get("consequent").forEach(function (path) {
self.explodeStatement(path);
});
});
});
self.mark(after);
if (defaultLoc.value === -1) {
self.mark(defaultLoc);
_assert["default"].strictEqual(after.value, defaultLoc.value);
}
break;
case "IfStatement":
var elseLoc = stmt.alternate && this.loc();
after = this.loc();
self.jumpIfNot(self.explodeExpression(path.get("test")), elseLoc || after);
self.explodeStatement(path.get("consequent"));
if (elseLoc) {
self.jump(after);
self.mark(elseLoc);
self.explodeStatement(path.get("alternate"));
}
self.mark(after);
break;
case "ReturnStatement":
self.emitAbruptCompletion({
type: "return",
value: self.explodeExpression(path.get("argument"))
});
break;
case "WithStatement":
throw new Error("WithStatement not supported in generator functions.");
case "TryStatement":
after = this.loc();
var handler = stmt.handler;
var catchLoc = handler && this.loc();
var catchEntry = catchLoc && new leap.CatchEntry(catchLoc, handler.param);
var finallyLoc = stmt.finalizer && this.loc();
var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after);
var tryEntry = new leap.TryEntry(self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry);
self.tryEntries.push(tryEntry);
self.updateContextPrevLoc(tryEntry.firstLoc);
self.leapManager.withEntry(tryEntry, function () {
self.explodeStatement(path.get("block"));
if (catchLoc) {
if (finallyLoc) {
// If we have both a catch block and a finally block, then
// because we emit the catch block first, we need to jump over
// it to the finally block.
self.jump(finallyLoc);
} else {
// If there is no finally block, then we need to jump over the
// catch block to the fall-through location.
self.jump(after);
}
self.updateContextPrevLoc(self.mark(catchLoc));
var bodyPath = path.get("handler.body");
var safeParam = self.makeTempVar();
self.clearPendingException(tryEntry.firstLoc, safeParam);
bodyPath.traverse(catchParamVisitor, {
getSafeParam: function getSafeParam() {
return t.cloneDeep(safeParam);
},
catchParamName: handler.param.name
});
self.leapManager.withEntry(catchEntry, function () {
self.explodeStatement(bodyPath);
});
}
if (finallyLoc) {
self.updateContextPrevLoc(self.mark(finallyLoc));
self.leapManager.withEntry(finallyEntry, function () {
self.explodeStatement(path.get("finalizer"));
});
self.emit(t.returnStatement(t.callExpression(self.contextProperty("finish"), [finallyEntry.firstLoc])));
}
});
self.mark(after);
break;
case "ThrowStatement":
self.emit(t.throwStatement(self.explodeExpression(path.get("argument"))));
break;
default:
throw new Error("unknown Statement of type " + JSON.stringify(stmt.type));
}
};
var catchParamVisitor = {
Identifier: function Identifier(path, state) {
if (path.node.name === state.catchParamName && util.isReference(path)) {
util.replaceWithOrRemove(path, state.getSafeParam());
}
},
Scope: function Scope(path, state) {
if (path.scope.hasOwnBinding(state.catchParamName)) {
// Don't descend into nested scopes that shadow the catch
// parameter with their own declarations.
path.skip();
}
}
};
Ep.emitAbruptCompletion = function (record) {
if (!isValidCompletion(record)) {
_assert["default"].ok(false, "invalid completion record: " + JSON.stringify(record));
}
_assert["default"].notStrictEqual(record.type, "normal", "normal completions are not abrupt");
var t = util.getTypes();
var abruptArgs = [t.stringLiteral(record.type)];
if (record.type === "break" || record.type === "continue") {
t.assertLiteral(record.target);
abruptArgs[1] = this.insertedLocs.has(record.target) ? record.target : t.cloneDeep(record.target);
} else if (record.type === "return" || record.type === "throw") {
if (record.value) {
t.assertExpression(record.value);
abruptArgs[1] = this.insertedLocs.has(record.value) ? record.value : t.cloneDeep(record.value);
}
}
this.emit(t.returnStatement(t.callExpression(this.contextProperty("abrupt"), abruptArgs)));
};
function isValidCompletion(record) {
var type = record.type;
if (type === "normal") {
return !hasOwn.call(record, "target");
}
if (type === "break" || type === "continue") {
return !hasOwn.call(record, "value") && util.getTypes().isLiteral(record.target);
}
if (type === "return" || type === "throw") {
return hasOwn.call(record, "value") && !hasOwn.call(record, "target");
}
return false;
} // Not all offsets into emitter.listing are potential jump targets. For
// example, execution typically falls into the beginning of a try block
// without jumping directly there. This method returns the current offset
// without marking it, so that a switch case will not necessarily be
// generated for this offset (I say "not necessarily" because the same
// location might end up being marked in the process of emitting other
// statements). There's no logical harm in marking such locations as jump
// targets, but minimizing the number of switch cases keeps the generated
// code shorter.
Ep.getUnmarkedCurrentLoc = function () {
return util.getTypes().numericLiteral(this.listing.length);
}; // The context.prev property takes the value of context.next whenever we
// evaluate the switch statement discriminant, which is generally good
// enough for tracking the last location we jumped to, but sometimes
// context.prev needs to be more precise, such as when we fall
// successfully out of a try block and into a finally block without
// jumping. This method exists to update context.prev to the freshest
// available location. If we were implementing a full interpreter, we
// would know the location of the current instruction with complete
// precision at all times, but we don't have that luxury here, as it would
// be costly and verbose to set context.prev before every statement.
Ep.updateContextPrevLoc = function (loc) {
var t = util.getTypes();
if (loc) {
t.assertLiteral(loc);
if (loc.value === -1) {
// If an uninitialized location literal was passed in, set its value
// to the current this.listing.length.
loc.value = this.listing.length;
} else {
// Otherwise assert that the location matches the current offset.
_assert["default"].strictEqual(loc.value, this.listing.length);
}
} else {
loc = this.getUnmarkedCurrentLoc();
} // Make sure context.prev is up to date in case we fell into this try
// statement without jumping to it. TODO Consider avoiding this
// assignment when we know control must have jumped here.
this.emitAssign(this.contextProperty("prev"), loc);
};
Ep.explodeExpression = function (path, ignoreResult) {
var t = util.getTypes();
var expr = path.node;
if (expr) {
t.assertExpression(expr);
} else {
return expr;
}
var self = this;
var result; // Used optionally by several cases below.
var after;
function finish(expr) {
t.assertExpression(expr);
if (ignoreResult) {
self.emit(expr);
} else {
return expr;
}
} // If the expression does not contain a leap, then we either emit the
// expression as a standalone statement or return it whole.
if (!meta.containsLeap(expr)) {
return finish(expr);
} // If any child contains a leap (such as a yield or labeled continue or
// break statement), then any sibling subexpressions will almost
// certainly have to be exploded in order to maintain the order of their
// side effects relative to the leaping child(ren).
var hasLeapingChildren = meta.containsLeap.onlyChildren(expr); // In order to save the rest of explodeExpression from a combinatorial
// trainwreck of special cases, explodeViaTempVar is responsible for
// deciding when a subexpression needs to be "exploded," which is my
// very technical term for emitting the subexpression as an assignment
// to a temporary variable and the substituting the temporary variable
// for the original subexpression. Think of exploded view diagrams, not
// Michael Bay movies. The point of exploding subexpressions is to
// control the precise order in which the generated code realizes the
// side effects of those subexpressions.
function explodeViaTempVar(tempVar, childPath, ignoreChildResult) {
_assert["default"].ok(!ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?");
var result = self.explodeExpression(childPath, ignoreChildResult);
if (ignoreChildResult) {// Side effects already emitted above.
} else if (tempVar || hasLeapingChildren && !t.isLiteral(result)) {
// If tempVar was provided, then the result will always be assigned
// to it, even if the result does not otherwise need to be assigned
// to a temporary variable. When no tempVar is provided, we have
// the flexibility to decide whether a temporary variable is really
// necessary. Unfortunately, in general, a temporary variable is
// required whenever any child contains a yield expression, since it
// is difficult to prove (at all, let alone efficiently) whether
// this result would evaluate to the same value before and after the
// yield (see #206). One narrow case where we can prove it doesn't
// matter (and thus we do not need a temporary variable) is when the
// result in question is a Literal value.
result = self.emitAssign(tempVar || self.makeTempVar(), result);
}
return result;
} // If ignoreResult is true, then we must take full responsibility for
// emitting the expression with all its side effects, and we should not
// return a result.
switch (expr.type) {
case "MemberExpression":
return finish(t.memberExpression(self.explodeExpression(path.get("object")), expr.computed ? explodeViaTempVar(null, path.get("property")) : expr.property, expr.computed));
case "CallExpression":
var calleePath = path.get("callee");
var argsPath = path.get("arguments");
var newCallee;
var newArgs;
var hasLeapingArgs = argsPath.some(function (argPath) {
return meta.containsLeap(argPath.node);
});
var injectFirstArg = null;
if (t.isMemberExpression(calleePath.node)) {
if (hasLeapingArgs) {
// If the arguments of the CallExpression contained any yield
// expressions, then we need to be sure to evaluate the callee
// before evaluating the arguments, but if the callee was a member
// expression, then we must be careful that the object of the
// member expression still gets bound to `this` for the call.
var newObject = explodeViaTempVar( // Assign the exploded callee.object expression to a temporary
// variable so that we can use it twice without reevaluating it.
self.makeTempVar(), calleePath.get("object"));
var newProperty = calleePath.node.computed ? explodeViaTempVar(null, calleePath.get("property")) : calleePath.node.property;
injectFirstArg = newObject;
newCallee = t.memberExpression(t.memberExpression(t.cloneDeep(newObject), newProperty, calleePath.node.computed), t.identifier("call"), false);
} else {
newCallee = self.explodeExpression(calleePath);
}
} else {
newCallee = explodeViaTempVar(null, calleePath);
if (t.isMemberExpression(newCallee)) {
// If the callee was not previously a MemberExpression, then the
// CallExpression was "unqualified," meaning its `this` object
// should be the global object. If the exploded expression has
// become a MemberExpression (e.g. a context property, probably a
// temporary variable), then we need to force it to be unqualified
// by using the (0, object.property)(...) trick; otherwise, it
// will receive the object of the MemberExpression as its `this`
// object.
newCallee = t.sequenceExpression([t.numericLiteral(0), t.cloneDeep(newCallee)]);
}
}
if (hasLeapingArgs) {
newArgs = argsPath.map(function (argPath) {
return explodeViaTempVar(null, argPath);
});
if (injectFirstArg) newArgs.unshift(injectFirstArg);
newArgs = newArgs.map(function (arg) {
return t.cloneDeep(arg);
});
} else {
newArgs = path.node.arguments;
}
return finish(t.callExpression(newCallee, newArgs));
case "NewExpression":
return finish(t.newExpression(explodeViaTempVar(null, path.get("callee")), path.get("arguments").map(function (argPath) {
return explodeViaTempVar(null, argPath);
})));
case "ObjectExpression":
return finish(t.objectExpression(path.get("properties").map(function (propPath) {
if (propPath.isObjectProperty()) {
return t.objectProperty(propPath.node.key, explodeViaTempVar(null, propPath.get("value")), propPath.node.computed);
} else {
return propPath.node;
}
})));
case "ArrayExpression":
return finish(t.arrayExpression(path.get("elements").map(function (elemPath) {
if (elemPath.isSpreadElement()) {
return t.spreadElement(explodeViaTempVar(null, elemPath.get("argument")));
} else {
return explodeViaTempVar(null, elemPath);
}
})));
case "SequenceExpression":
var lastIndex = expr.expressions.length - 1;
path.get("expressions").forEach(function (exprPath) {
if (exprPath.key === lastIndex) {
result = self.explodeExpression(exprPath, ignoreResult);
} else {
self.explodeExpression(exprPath, true);
}
});
return result;
case "LogicalExpression":
after = this.loc();
if (!ignoreResult) {
result = self.makeTempVar();
}
var left = explodeViaTempVar(result, path.get("left"));
if (expr.operator === "&&") {
self.jumpIfNot(left, after);
} else {
_assert["default"].strictEqual(expr.operator, "||");
self.jumpIf(left, after);
}
explodeViaTempVar(result, path.get("right"), ignoreResult);
self.mark(after);
return result;
case "ConditionalExpression":
var elseLoc = this.loc();
after = this.loc();
var test = self.explodeExpression(path.get("test"));
self.jumpIfNot(test, elseLoc);
if (!ignoreResult) {
result = self.makeTempVar();
}
explodeViaTempVar(result, path.get("consequent"), ignoreResult);
self.jump(after);
self.mark(elseLoc);
explodeViaTempVar(result, path.get("alternate"), ignoreResult);
self.mark(after);
return result;
case "UnaryExpression":
return finish(t.unaryExpression(expr.operator, // Can't (and don't need to) break up the syntax of the argument.
// Think about delete a[b].
self.explodeExpression(path.get("argument")), !!expr.prefix));
case "BinaryExpression":
return finish(t.binaryExpression(expr.operator, explodeViaTempVar(null, path.get("left")), explodeViaTempVar(null, path.get("right"))));
case "AssignmentExpression":
if (expr.operator === "=") {
// If this is a simple assignment, the left hand side does not need
// to be read before the right hand side is evaluated, so we can
// avoid the more complicated logic below.
return finish(t.assignmentExpression(expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right"))));
}
var lhs = self.explodeExpression(path.get("left"));
var temp = self.emitAssign(self.makeTempVar(), lhs); // For example,
//
// x += yield y
//
// becomes
//
// context.t0 = x
// x = context.t0 += yield y
//
// so that the left-hand side expression is read before the yield.
// Fixes https://github.com/facebook/regenerator/issues/345.
return finish(t.assignmentExpression("=", t.cloneDeep(lhs), t.assignmentExpression(expr.operator, t.cloneDeep(temp), self.explodeExpression(path.get("right")))));
case "UpdateExpression":
return finish(t.updateExpression(expr.operator, self.explodeExpression(path.get("argument")), expr.prefix));
case "YieldExpression":
after = this.loc();
var arg = expr.argument && self.explodeExpression(path.get("argument"));
if (arg && expr.delegate) {
var _result = self.makeTempVar();
var _ret = t.returnStatement(t.callExpression(self.contextProperty("delegateYield"), [arg, t.stringLiteral(_result.property.name), after]));
_ret.loc = expr.loc;
self.emit(_ret);
self.mark(after);
return _result;
}
self.emitAssign(self.contextProperty("next"), after);
var ret = t.returnStatement(t.cloneDeep(arg) || null); // Preserve the `yield` location so that source mappings for the statements
// link back to the yield properly.
ret.loc = expr.loc;
self.emit(ret);
self.mark(after);
return self.contextProperty("sent");
default:
throw new Error("unknown Expression of type " + JSON.stringify(expr.type));
}
};

View file

@ -0,0 +1,136 @@
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
var util = _interopRequireWildcard(require("./util"));
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var hasOwn = Object.prototype.hasOwnProperty; // The hoist function takes a FunctionExpression or FunctionDeclaration
// and replaces any Declaration nodes in its body with assignments, then
// returns a VariableDeclaration containing just the names of the removed
// declarations.
exports.hoist = function (funPath) {
var t = util.getTypes();
t.assertFunction(funPath.node);
var vars = {};
function varDeclToExpr(_ref, includeIdentifiers) {
var vdec = _ref.node,
scope = _ref.scope;
t.assertVariableDeclaration(vdec); // TODO assert.equal(vdec.kind, "var");
var exprs = [];
vdec.declarations.forEach(function (dec) {
// Note: We duplicate 'dec.id' here to ensure that the variable declaration IDs don't
// have the same 'loc' value, since that can make sourcemaps and retainLines behave poorly.
vars[dec.id.name] = t.identifier(dec.id.name); // Remove the binding, to avoid "duplicate declaration" errors when it will
// be injected again.
scope.removeBinding(dec.id.name);
if (dec.init) {
exprs.push(t.assignmentExpression("=", dec.id, dec.init));
} else if (includeIdentifiers) {
exprs.push(dec.id);
}
});
if (exprs.length === 0) return null;
if (exprs.length === 1) return exprs[0];
return t.sequenceExpression(exprs);
}
funPath.get("body").traverse({
VariableDeclaration: {
exit: function exit(path) {
var expr = varDeclToExpr(path, false);
if (expr === null) {
path.remove();
} else {
// We don't need to traverse this expression any further because
// there can't be any new declarations inside an expression.
util.replaceWithOrRemove(path, t.expressionStatement(expr));
} // Since the original node has been either removed or replaced,
// avoid traversing it any further.
path.skip();
}
},
ForStatement: function ForStatement(path) {
var init = path.get("init");
if (init.isVariableDeclaration()) {
util.replaceWithOrRemove(init, varDeclToExpr(init, false));
}
},
ForXStatement: function ForXStatement(path) {
var left = path.get("left");
if (left.isVariableDeclaration()) {
util.replaceWithOrRemove(left, varDeclToExpr(left, true));
}
},
FunctionDeclaration: function FunctionDeclaration(path) {
var node = path.node;
vars[node.id.name] = node.id;
var assignment = t.expressionStatement(t.assignmentExpression("=", t.clone(node.id), t.functionExpression(path.scope.generateUidIdentifierBasedOnNode(node), node.params, node.body, node.generator, node.expression)));
if (path.parentPath.isBlockStatement()) {
// Insert the assignment form before the first statement in the
// enclosing block.
path.parentPath.unshiftContainer("body", assignment); // Remove the function declaration now that we've inserted the
// equivalent assignment form at the beginning of the block.
path.remove();
} else {
// If the parent node is not a block statement, then we can just
// replace the declaration with the equivalent assignment form
// without worrying about hoisting it.
util.replaceWithOrRemove(path, assignment);
} // Remove the binding, to avoid "duplicate declaration" errors when it will
// be injected again.
path.scope.removeBinding(node.id.name); // Don't hoist variables out of inner functions.
path.skip();
},
FunctionExpression: function FunctionExpression(path) {
// Don't descend into nested function expressions.
path.skip();
},
ArrowFunctionExpression: function ArrowFunctionExpression(path) {
// Don't descend into nested function expressions.
path.skip();
}
});
var paramNames = {};
funPath.get("params").forEach(function (paramPath) {
var param = paramPath.node;
if (t.isIdentifier(param)) {
paramNames[param.name] = param;
} else {// Variables declared by destructuring parameter patterns will be
// harmlessly re-declared.
}
});
var declarations = [];
Object.keys(vars).forEach(function (name) {
if (!hasOwn.call(paramNames, name)) {
declarations.push(t.variableDeclarator(vars[name], null));
}
});
if (declarations.length === 0) {
return null; // Be sure to handle this case!
}
return t.variableDeclaration("var", declarations);
};

View file

@ -0,0 +1,29 @@
"use strict";
exports.__esModule = true;
exports["default"] = _default;
var _visit = require("./visit");
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
function _default(context) {
var plugin = {
visitor: (0, _visit.getVisitor)(context)
}; // Some presets manually call child presets, but fail to pass along the
// context object. Out of an abundance of caution, we verify that it
// exists first to avoid causing unnecessary breaking changes.
var version = context && context.version; // The "name" property is not allowed in older versions of Babel (6.x)
// and will cause the plugin validator to throw an exception.
if (version && parseInt(version, 10) >= 7) {
plugin.name = "regenerator-transform";
}
return plugin;
}

View file

@ -0,0 +1,178 @@
"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var _emit = require("./emit");
var _util = require("util");
var _util2 = require("./util");
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
function Entry() {
_assert["default"].ok(this instanceof Entry);
}
function FunctionEntry(returnLoc) {
Entry.call(this);
(0, _util2.getTypes)().assertLiteral(returnLoc);
this.returnLoc = returnLoc;
}
(0, _util.inherits)(FunctionEntry, Entry);
exports.FunctionEntry = FunctionEntry;
function LoopEntry(breakLoc, continueLoc, label) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(breakLoc);
t.assertLiteral(continueLoc);
if (label) {
t.assertIdentifier(label);
} else {
label = null;
}
this.breakLoc = breakLoc;
this.continueLoc = continueLoc;
this.label = label;
}
(0, _util.inherits)(LoopEntry, Entry);
exports.LoopEntry = LoopEntry;
function SwitchEntry(breakLoc) {
Entry.call(this);
(0, _util2.getTypes)().assertLiteral(breakLoc);
this.breakLoc = breakLoc;
}
(0, _util.inherits)(SwitchEntry, Entry);
exports.SwitchEntry = SwitchEntry;
function TryEntry(firstLoc, catchEntry, finallyEntry) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(firstLoc);
if (catchEntry) {
_assert["default"].ok(catchEntry instanceof CatchEntry);
} else {
catchEntry = null;
}
if (finallyEntry) {
_assert["default"].ok(finallyEntry instanceof FinallyEntry);
} else {
finallyEntry = null;
} // Have to have one or the other (or both).
_assert["default"].ok(catchEntry || finallyEntry);
this.firstLoc = firstLoc;
this.catchEntry = catchEntry;
this.finallyEntry = finallyEntry;
}
(0, _util.inherits)(TryEntry, Entry);
exports.TryEntry = TryEntry;
function CatchEntry(firstLoc, paramId) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(firstLoc);
t.assertIdentifier(paramId);
this.firstLoc = firstLoc;
this.paramId = paramId;
}
(0, _util.inherits)(CatchEntry, Entry);
exports.CatchEntry = CatchEntry;
function FinallyEntry(firstLoc, afterLoc) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(firstLoc);
t.assertLiteral(afterLoc);
this.firstLoc = firstLoc;
this.afterLoc = afterLoc;
}
(0, _util.inherits)(FinallyEntry, Entry);
exports.FinallyEntry = FinallyEntry;
function LabeledEntry(breakLoc, label) {
Entry.call(this);
var t = (0, _util2.getTypes)();
t.assertLiteral(breakLoc);
t.assertIdentifier(label);
this.breakLoc = breakLoc;
this.label = label;
}
(0, _util.inherits)(LabeledEntry, Entry);
exports.LabeledEntry = LabeledEntry;
function LeapManager(emitter) {
_assert["default"].ok(this instanceof LeapManager);
_assert["default"].ok(emitter instanceof _emit.Emitter);
this.emitter = emitter;
this.entryStack = [new FunctionEntry(emitter.finalLoc)];
}
var LMp = LeapManager.prototype;
exports.LeapManager = LeapManager;
LMp.withEntry = function (entry, callback) {
_assert["default"].ok(entry instanceof Entry);
this.entryStack.push(entry);
try {
callback.call(this.emitter);
} finally {
var popped = this.entryStack.pop();
_assert["default"].strictEqual(popped, entry);
}
};
LMp._findLeapLocation = function (property, label) {
for (var i = this.entryStack.length - 1; i >= 0; --i) {
var entry = this.entryStack[i];
var loc = entry[property];
if (loc) {
if (label) {
if (entry.label && entry.label.name === label.name) {
return loc;
}
} else if (entry instanceof LabeledEntry) {// Ignore LabeledEntry entries unless we are actually breaking to
// a label.
} else {
return loc;
}
}
}
return null;
};
LMp.getBreakLoc = function (label) {
return this._findLeapLocation("breakLoc", label);
};
LMp.getContinueLoc = function (label) {
return this._findLeapLocation("continueLoc", label);
};

View file

@ -0,0 +1,113 @@
"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var _util = require("./util.js");
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var mMap = new WeakMap();
function m(node) {
if (!mMap.has(node)) {
mMap.set(node, {});
}
return mMap.get(node);
}
var hasOwn = Object.prototype.hasOwnProperty;
function makePredicate(propertyName, knownTypes) {
function onlyChildren(node) {
var t = (0, _util.getTypes)();
t.assertNode(node); // Assume no side effects until we find out otherwise.
var result = false;
function check(child) {
if (result) {// Do nothing.
} else if (Array.isArray(child)) {
child.some(check);
} else if (t.isNode(child)) {
_assert["default"].strictEqual(result, false);
result = predicate(child);
}
return result;
}
var keys = t.VISITOR_KEYS[node.type];
if (keys) {
for (var i = 0; i < keys.length; i++) {
var key = keys[i];
var child = node[key];
check(child);
}
}
return result;
}
function predicate(node) {
(0, _util.getTypes)().assertNode(node);
var meta = m(node);
if (hasOwn.call(meta, propertyName)) return meta[propertyName]; // Certain types are "opaque," which means they have no side
// effects or leaps and we don't care about their subexpressions.
if (hasOwn.call(opaqueTypes, node.type)) return meta[propertyName] = false;
if (hasOwn.call(knownTypes, node.type)) return meta[propertyName] = true;
return meta[propertyName] = onlyChildren(node);
}
predicate.onlyChildren = onlyChildren;
return predicate;
}
var opaqueTypes = {
FunctionExpression: true,
ArrowFunctionExpression: true
}; // These types potentially have side effects regardless of what side
// effects their subexpressions have.
var sideEffectTypes = {
CallExpression: true,
// Anything could happen!
ForInStatement: true,
// Modifies the key variable.
UnaryExpression: true,
// Think delete.
BinaryExpression: true,
// Might invoke .toString() or .valueOf().
AssignmentExpression: true,
// Side-effecting by definition.
UpdateExpression: true,
// Updates are essentially assignments.
NewExpression: true // Similar to CallExpression.
}; // These types are the direct cause of all leaps in control flow.
var leapTypes = {
YieldExpression: true,
BreakStatement: true,
ContinueStatement: true,
ReturnStatement: true,
ThrowStatement: true
}; // All leap types are also side effect types.
for (var type in leapTypes) {
if (hasOwn.call(leapTypes, type)) {
sideEffectTypes[type] = leapTypes[type];
}
}
exports.hasSideEffects = makePredicate("hasSideEffects", sideEffectTypes);
exports.containsLeap = makePredicate("containsLeap", leapTypes);

View file

@ -0,0 +1,79 @@
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
exports.__esModule = true;
exports["default"] = replaceShorthandObjectMethod;
var util = _interopRequireWildcard(require("./util"));
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// this function converts a shorthand object generator method into a normal
// (non-shorthand) object property which is a generator function expression. for
// example, this:
//
// var foo = {
// *bar(baz) { return 5; }
// }
//
// should be replaced with:
//
// var foo = {
// bar: function*(baz) { return 5; }
// }
//
// to do this, it clones the parameter array and the body of the object generator
// method into a new FunctionExpression.
//
// this method can be passed any Function AST node path, and it will return
// either:
// a) the path that was passed in (iff the path did not need to be replaced) or
// b) the path of the new FunctionExpression that was created as a replacement
// (iff the path did need to be replaced)
//
// In either case, though, the caller can count on the fact that the return value
// is a Function AST node path.
//
// If this function is called with an AST node path that is not a Function (or with an
// argument that isn't an AST node path), it will throw an error.
function replaceShorthandObjectMethod(path) {
var t = util.getTypes();
if (!path.node || !t.isFunction(path.node)) {
throw new Error("replaceShorthandObjectMethod can only be called on Function AST node paths.");
} // this function only replaces shorthand object methods (called ObjectMethod
// in Babel-speak).
if (!t.isObjectMethod(path.node)) {
return path;
} // this function only replaces generators.
if (!path.node.generator) {
return path;
}
var parameters = path.node.params.map(function (param) {
return t.cloneDeep(param);
});
var functionExpression = t.functionExpression(null, // id
parameters, // params
t.cloneDeep(path.node.body), // body
path.node.generator, path.node.async);
util.replaceWithOrRemove(path, t.objectProperty(t.cloneDeep(path.node.key), // key
functionExpression, //value
path.node.computed, // computed
false // shorthand
)); // path now refers to the ObjectProperty AST node path, but we want to return a
// Function AST node path for the function expression we created. we know that
// the FunctionExpression we just created is the value of the ObjectProperty,
// so return the "value" path off of this path.
return path.get("value");
}

View file

@ -0,0 +1,56 @@
"use strict";
exports.__esModule = true;
exports.wrapWithTypes = wrapWithTypes;
exports.getTypes = getTypes;
exports.runtimeProperty = runtimeProperty;
exports.isReference = isReference;
exports.replaceWithOrRemove = replaceWithOrRemove;
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var currentTypes = null;
function wrapWithTypes(types, fn) {
return function () {
var oldTypes = currentTypes;
currentTypes = types;
try {
for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {
args[_key] = arguments[_key];
}
return fn.apply(this, args);
} finally {
currentTypes = oldTypes;
}
};
}
function getTypes() {
return currentTypes;
}
function runtimeProperty(name) {
var t = getTypes();
return t.memberExpression(t.identifier("regeneratorRuntime"), t.identifier(name), false);
}
function isReference(path) {
return path.isReferenced() || path.parentPath.isAssignmentExpression({
left: path.node
});
}
function replaceWithOrRemove(path, replacement) {
if (replacement) {
path.replaceWith(replacement);
} else {
path.remove();
}
}

View file

@ -0,0 +1,326 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
"use strict";
var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard");
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var _hoist = require("./hoist");
var _emit = require("./emit");
var _replaceShorthandObjectMethod = _interopRequireDefault(require("./replaceShorthandObjectMethod"));
var util = _interopRequireWildcard(require("./util"));
exports.getVisitor = function (_ref) {
var t = _ref.types;
return {
Method: function Method(path, state) {
var node = path.node;
if (!shouldRegenerate(node, state)) return;
var container = t.functionExpression(null, [], t.cloneNode(node.body, false), node.generator, node.async);
path.get("body").set("body", [t.returnStatement(t.callExpression(container, []))]); // Regardless of whether or not the wrapped function is a an async method
// or generator the outer function should not be
node.async = false;
node.generator = false; // Unwrap the wrapper IIFE's environment so super and this and such still work.
path.get("body.body.0.argument.callee").unwrapFunctionEnvironment();
},
Function: {
exit: util.wrapWithTypes(t, function (path, state) {
var node = path.node;
if (!shouldRegenerate(node, state)) return; // if this is an ObjectMethod, we need to convert it to an ObjectProperty
path = (0, _replaceShorthandObjectMethod["default"])(path);
node = path.node;
var contextId = path.scope.generateUidIdentifier("context");
var argsId = path.scope.generateUidIdentifier("args");
path.ensureBlock();
var bodyBlockPath = path.get("body");
if (node.async) {
bodyBlockPath.traverse(awaitVisitor);
}
bodyBlockPath.traverse(functionSentVisitor, {
context: contextId
});
var outerBody = [];
var innerBody = [];
bodyBlockPath.get("body").forEach(function (childPath) {
var node = childPath.node;
if (t.isExpressionStatement(node) && t.isStringLiteral(node.expression)) {
// Babylon represents directives like "use strict" as elements
// of a bodyBlockPath.node.directives array, but they could just
// as easily be represented (by other parsers) as traditional
// string-literal-valued expression statements, so we need to
// handle that here. (#248)
outerBody.push(node);
} else if (node && node._blockHoist != null) {
outerBody.push(node);
} else {
innerBody.push(node);
}
});
if (outerBody.length > 0) {
// Only replace the inner body if we actually hoisted any statements
// to the outer body.
bodyBlockPath.node.body = innerBody;
}
var outerFnExpr = getOuterFnExpr(path); // Note that getOuterFnExpr has the side-effect of ensuring that the
// function has a name (so node.id will always be an Identifier), even
// if a temporary name has to be synthesized.
t.assertIdentifier(node.id);
var innerFnId = t.identifier(node.id.name + "$"); // Turn all declarations into vars, and replace the original
// declarations with equivalent assignment expressions.
var vars = (0, _hoist.hoist)(path);
var context = {
usesThis: false,
usesArguments: false,
getArgsId: function getArgsId() {
return t.clone(argsId);
}
};
path.traverse(argumentsThisVisitor, context);
if (context.usesArguments) {
vars = vars || t.variableDeclaration("var", []);
vars.declarations.push(t.variableDeclarator(t.clone(argsId), t.identifier("arguments")));
}
var emitter = new _emit.Emitter(contextId);
emitter.explode(path.get("body"));
if (vars && vars.declarations.length > 0) {
outerBody.push(vars);
}
var wrapArgs = [emitter.getContextFunction(innerFnId)];
var tryLocsList = emitter.getTryLocsList();
if (node.generator) {
wrapArgs.push(outerFnExpr);
} else if (context.usesThis || tryLocsList || node.async) {
// Async functions that are not generators don't care about the
// outer function because they don't need it to be marked and don't
// inherit from its .prototype.
wrapArgs.push(t.nullLiteral());
}
if (context.usesThis) {
wrapArgs.push(t.thisExpression());
} else if (tryLocsList || node.async) {
wrapArgs.push(t.nullLiteral());
}
if (tryLocsList) {
wrapArgs.push(tryLocsList);
} else if (node.async) {
wrapArgs.push(t.nullLiteral());
}
if (node.async) {
// Rename any locally declared "Promise" variable,
// to use the global one.
var currentScope = path.scope;
do {
if (currentScope.hasOwnBinding("Promise")) currentScope.rename("Promise");
} while (currentScope = currentScope.parent);
wrapArgs.push(t.identifier("Promise"));
}
var wrapCall = t.callExpression(util.runtimeProperty(node.async ? "async" : "wrap"), wrapArgs);
outerBody.push(t.returnStatement(wrapCall));
node.body = t.blockStatement(outerBody); // We injected a few new variable declarations (for every hoisted var),
// so we need to add them to the scope.
path.get("body.body").forEach(function (p) {
return p.scope.registerDeclaration(p);
});
var oldDirectives = bodyBlockPath.node.directives;
if (oldDirectives) {
// Babylon represents directives like "use strict" as elements of
// a bodyBlockPath.node.directives array. (#248)
node.body.directives = oldDirectives;
}
var wasGeneratorFunction = node.generator;
if (wasGeneratorFunction) {
node.generator = false;
}
if (node.async) {
node.async = false;
}
if (wasGeneratorFunction && t.isExpression(node)) {
util.replaceWithOrRemove(path, t.callExpression(util.runtimeProperty("mark"), [node]));
path.addComment("leading", "#__PURE__");
}
var insertedLocs = emitter.getInsertedLocs();
path.traverse({
NumericLiteral: function NumericLiteral(path) {
if (!insertedLocs.has(path.node)) {
return;
}
path.replaceWith(t.numericLiteral(path.node.value));
}
}); // Generators are processed in 'exit' handlers so that regenerator only has to run on
// an ES5 AST, but that means traversal will not pick up newly inserted references
// to things like 'regeneratorRuntime'. To avoid this, we explicitly requeue.
path.requeue();
})
}
};
}; // Check if a node should be transformed by regenerator
function shouldRegenerate(node, state) {
if (node.generator) {
if (node.async) {
// Async generator
return state.opts.asyncGenerators !== false;
} else {
// Plain generator
return state.opts.generators !== false;
}
} else if (node.async) {
// Async function
return state.opts.async !== false;
} else {
// Not a generator or async function.
return false;
}
} // Given a NodePath for a Function, return an Expression node that can be
// used to refer reliably to the function object from inside the function.
// This expression is essentially a replacement for arguments.callee, with
// the key advantage that it works in strict mode.
function getOuterFnExpr(funPath) {
var t = util.getTypes();
var node = funPath.node;
t.assertFunction(node);
if (!node.id) {
// Default-exported function declarations, and function expressions may not
// have a name to reference, so we explicitly add one.
node.id = funPath.scope.parent.generateUidIdentifier("callee");
}
if (node.generator && // Non-generator functions don't need to be marked.
t.isFunctionDeclaration(node)) {
// Return the identifier returned by runtime.mark(<node.id>).
return getMarkedFunctionId(funPath);
}
return t.clone(node.id);
}
var markInfo = new WeakMap();
function getMarkInfo(node) {
if (!markInfo.has(node)) {
markInfo.set(node, {});
}
return markInfo.get(node);
}
function getMarkedFunctionId(funPath) {
var t = util.getTypes();
var node = funPath.node;
t.assertIdentifier(node.id);
var blockPath = funPath.findParent(function (path) {
return path.isProgram() || path.isBlockStatement();
});
if (!blockPath) {
return node.id;
}
var block = blockPath.node;
_assert["default"].ok(Array.isArray(block.body));
var info = getMarkInfo(block);
if (!info.decl) {
info.decl = t.variableDeclaration("var", []);
blockPath.unshiftContainer("body", info.decl);
info.declPath = blockPath.get("body.0");
}
_assert["default"].strictEqual(info.declPath.node, info.decl); // Get a new unique identifier for our marked variable.
var markedId = blockPath.scope.generateUidIdentifier("marked");
var markCallExp = t.callExpression(util.runtimeProperty("mark"), [t.clone(node.id)]);
var index = info.decl.declarations.push(t.variableDeclarator(markedId, markCallExp)) - 1;
var markCallExpPath = info.declPath.get("declarations." + index + ".init");
_assert["default"].strictEqual(markCallExpPath.node, markCallExp);
markCallExpPath.addComment("leading", "#__PURE__");
return t.clone(markedId);
}
var argumentsThisVisitor = {
"FunctionExpression|FunctionDeclaration|Method": function FunctionExpressionFunctionDeclarationMethod(path) {
path.skip();
},
Identifier: function Identifier(path, state) {
if (path.node.name === "arguments" && util.isReference(path)) {
util.replaceWithOrRemove(path, state.getArgsId());
state.usesArguments = true;
}
},
ThisExpression: function ThisExpression(path, state) {
state.usesThis = true;
}
};
var functionSentVisitor = {
MetaProperty: function MetaProperty(path) {
var node = path.node;
if (node.meta.name === "function" && node.property.name === "sent") {
var t = util.getTypes();
util.replaceWithOrRemove(path, t.memberExpression(t.clone(this.context), t.identifier("_sent")));
}
}
};
var awaitVisitor = {
Function: function Function(path) {
path.skip(); // Don't descend into nested function scopes.
},
AwaitExpression: function AwaitExpression(path) {
var t = util.getTypes(); // Convert await expressions to yield expressions.
var argument = path.node.argument; // Transforming `await x` to `yield regeneratorRuntime.awrap(x)`
// causes the argument to be wrapped in such a way that the runtime
// can distinguish between awaited and merely yielded values.
util.replaceWithOrRemove(path, t.yieldExpression(t.callExpression(util.runtimeProperty("awrap"), [argument]), false));
}
};

View file

@ -0,0 +1,43 @@
{
"name": "regenerator-transform",
"author": "Ben Newman <bn@cs.stanford.edu>",
"description": "Explode async and generator functions into a state machine.",
"version": "0.14.5",
"main": "lib/index.js",
"keywords": [
"regenerator",
"runtime",
"generator",
"async"
],
"repository": {
"type": "git",
"url": "https://github.com/facebook/regenerator/tree/master/packages/regenerator-transform"
},
"license": "MIT",
"scripts": {
"prepublish": "npx babel src/ --out-dir lib/"
},
"babel": {
"plugins": [
"@babel/plugin-transform-runtime"
],
"presets": [
[
"@babel/preset-env",
{
"loose": true
}
]
]
},
"dependencies": {
"@babel/runtime": "^7.8.4"
},
"devDependencies": {
"@babel/cli": "^7.8.4",
"@babel/core": "^7.8.4",
"@babel/plugin-transform-runtime": "^7.8.3",
"@babel/preset-env": "^7.8.4"
}
}

1262
assets_old/node_modules/regenerator-transform/src/emit.js generated vendored Normal file

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,161 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import * as util from "./util";
let hasOwn = Object.prototype.hasOwnProperty;
// The hoist function takes a FunctionExpression or FunctionDeclaration
// and replaces any Declaration nodes in its body with assignments, then
// returns a VariableDeclaration containing just the names of the removed
// declarations.
exports.hoist = function(funPath) {
const t = util.getTypes();
t.assertFunction(funPath.node);
let vars = {};
function varDeclToExpr({ node: vdec, scope }, includeIdentifiers) {
t.assertVariableDeclaration(vdec);
// TODO assert.equal(vdec.kind, "var");
let exprs = [];
vdec.declarations.forEach(function(dec) {
// Note: We duplicate 'dec.id' here to ensure that the variable declaration IDs don't
// have the same 'loc' value, since that can make sourcemaps and retainLines behave poorly.
vars[dec.id.name] = t.identifier(dec.id.name);
// Remove the binding, to avoid "duplicate declaration" errors when it will
// be injected again.
scope.removeBinding(dec.id.name);
if (dec.init) {
exprs.push(t.assignmentExpression(
"=", dec.id, dec.init
));
} else if (includeIdentifiers) {
exprs.push(dec.id);
}
});
if (exprs.length === 0)
return null;
if (exprs.length === 1)
return exprs[0];
return t.sequenceExpression(exprs);
}
funPath.get("body").traverse({
VariableDeclaration: {
exit: function(path) {
let expr = varDeclToExpr(path, false);
if (expr === null) {
path.remove();
} else {
// We don't need to traverse this expression any further because
// there can't be any new declarations inside an expression.
util.replaceWithOrRemove(path, t.expressionStatement(expr));
}
// Since the original node has been either removed or replaced,
// avoid traversing it any further.
path.skip();
}
},
ForStatement: function(path) {
let init = path.get("init");
if (init.isVariableDeclaration()) {
util.replaceWithOrRemove(init, varDeclToExpr(init, false));
}
},
ForXStatement: function(path) {
let left = path.get("left");
if (left.isVariableDeclaration()) {
util.replaceWithOrRemove(left, varDeclToExpr(left, true));
}
},
FunctionDeclaration: function(path) {
let node = path.node;
vars[node.id.name] = node.id;
let assignment = t.expressionStatement(
t.assignmentExpression(
"=",
t.clone(node.id),
t.functionExpression(
path.scope.generateUidIdentifierBasedOnNode(node),
node.params,
node.body,
node.generator,
node.expression
)
)
);
if (path.parentPath.isBlockStatement()) {
// Insert the assignment form before the first statement in the
// enclosing block.
path.parentPath.unshiftContainer("body", assignment);
// Remove the function declaration now that we've inserted the
// equivalent assignment form at the beginning of the block.
path.remove();
} else {
// If the parent node is not a block statement, then we can just
// replace the declaration with the equivalent assignment form
// without worrying about hoisting it.
util.replaceWithOrRemove(path, assignment);
}
// Remove the binding, to avoid "duplicate declaration" errors when it will
// be injected again.
path.scope.removeBinding(node.id.name);
// Don't hoist variables out of inner functions.
path.skip();
},
FunctionExpression: function(path) {
// Don't descend into nested function expressions.
path.skip();
},
ArrowFunctionExpression: function(path) {
// Don't descend into nested function expressions.
path.skip();
}
});
let paramNames = {};
funPath.get("params").forEach(function(paramPath) {
let param = paramPath.node;
if (t.isIdentifier(param)) {
paramNames[param.name] = param;
} else {
// Variables declared by destructuring parameter patterns will be
// harmlessly re-declared.
}
});
let declarations = [];
Object.keys(vars).forEach(function(name) {
if (!hasOwn.call(paramNames, name)) {
declarations.push(t.variableDeclarator(vars[name], null));
}
});
if (declarations.length === 0) {
return null; // Be sure to handle this case!
}
return t.variableDeclaration("var", declarations);
};

View file

@ -0,0 +1,27 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import { getVisitor } from "./visit";
export default function (context) {
const plugin = {
visitor: getVisitor(context),
};
// Some presets manually call child presets, but fail to pass along the
// context object. Out of an abundance of caution, we verify that it
// exists first to avoid causing unnecessary breaking changes.
const version = context && context.version;
// The "name" property is not allowed in older versions of Babel (6.x)
// and will cause the plugin validator to throw an exception.
if (version && parseInt(version, 10) >= 7) {
plugin.name = "regenerator-transform";
}
return plugin;
}

View file

@ -0,0 +1,179 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import assert from "assert";
import { Emitter } from "./emit";
import { inherits } from "util";
import { getTypes } from "./util";
function Entry() {
assert.ok(this instanceof Entry);
}
function FunctionEntry(returnLoc) {
Entry.call(this);
getTypes().assertLiteral(returnLoc);
this.returnLoc = returnLoc;
}
inherits(FunctionEntry, Entry);
exports.FunctionEntry = FunctionEntry;
function LoopEntry(breakLoc, continueLoc, label) {
Entry.call(this);
const t = getTypes();
t.assertLiteral(breakLoc);
t.assertLiteral(continueLoc);
if (label) {
t.assertIdentifier(label);
} else {
label = null;
}
this.breakLoc = breakLoc;
this.continueLoc = continueLoc;
this.label = label;
}
inherits(LoopEntry, Entry);
exports.LoopEntry = LoopEntry;
function SwitchEntry(breakLoc) {
Entry.call(this);
getTypes().assertLiteral(breakLoc);
this.breakLoc = breakLoc;
}
inherits(SwitchEntry, Entry);
exports.SwitchEntry = SwitchEntry;
function TryEntry(firstLoc, catchEntry, finallyEntry) {
Entry.call(this);
const t = getTypes();
t.assertLiteral(firstLoc);
if (catchEntry) {
assert.ok(catchEntry instanceof CatchEntry);
} else {
catchEntry = null;
}
if (finallyEntry) {
assert.ok(finallyEntry instanceof FinallyEntry);
} else {
finallyEntry = null;
}
// Have to have one or the other (or both).
assert.ok(catchEntry || finallyEntry);
this.firstLoc = firstLoc;
this.catchEntry = catchEntry;
this.finallyEntry = finallyEntry;
}
inherits(TryEntry, Entry);
exports.TryEntry = TryEntry;
function CatchEntry(firstLoc, paramId) {
Entry.call(this);
const t = getTypes();
t.assertLiteral(firstLoc);
t.assertIdentifier(paramId);
this.firstLoc = firstLoc;
this.paramId = paramId;
}
inherits(CatchEntry, Entry);
exports.CatchEntry = CatchEntry;
function FinallyEntry(firstLoc, afterLoc) {
Entry.call(this);
const t = getTypes();
t.assertLiteral(firstLoc);
t.assertLiteral(afterLoc);
this.firstLoc = firstLoc;
this.afterLoc = afterLoc;
}
inherits(FinallyEntry, Entry);
exports.FinallyEntry = FinallyEntry;
function LabeledEntry(breakLoc, label) {
Entry.call(this);
const t = getTypes();
t.assertLiteral(breakLoc);
t.assertIdentifier(label);
this.breakLoc = breakLoc;
this.label = label;
}
inherits(LabeledEntry, Entry);
exports.LabeledEntry = LabeledEntry;
function LeapManager(emitter) {
assert.ok(this instanceof LeapManager);
assert.ok(emitter instanceof Emitter);
this.emitter = emitter;
this.entryStack = [new FunctionEntry(emitter.finalLoc)];
}
let LMp = LeapManager.prototype;
exports.LeapManager = LeapManager;
LMp.withEntry = function(entry, callback) {
assert.ok(entry instanceof Entry);
this.entryStack.push(entry);
try {
callback.call(this.emitter);
} finally {
let popped = this.entryStack.pop();
assert.strictEqual(popped, entry);
}
};
LMp._findLeapLocation = function(property, label) {
for (let i = this.entryStack.length - 1; i >= 0; --i) {
let entry = this.entryStack[i];
let loc = entry[property];
if (loc) {
if (label) {
if (entry.label &&
entry.label.name === label.name) {
return loc;
}
} else if (entry instanceof LabeledEntry) {
// Ignore LabeledEntry entries unless we are actually breaking to
// a label.
} else {
return loc;
}
}
}
return null;
};
LMp.getBreakLoc = function(label) {
return this._findLeapLocation("breakLoc", label);
};
LMp.getContinueLoc = function(label) {
return this._findLeapLocation("continueLoc", label);
};

View file

@ -0,0 +1,110 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import assert from "assert";
import { getTypes } from "./util.js";
const mMap = new WeakMap();
function m(node) {
if (!mMap.has(node)) {
mMap.set(node, {});
}
return mMap.get(node);
}
const hasOwn = Object.prototype.hasOwnProperty;
function makePredicate(propertyName, knownTypes) {
function onlyChildren(node) {
const t = getTypes();
t.assertNode(node);
// Assume no side effects until we find out otherwise.
let result = false;
function check(child) {
if (result) {
// Do nothing.
} else if (Array.isArray(child)) {
child.some(check);
} else if (t.isNode(child)) {
assert.strictEqual(result, false);
result = predicate(child);
}
return result;
}
let keys = t.VISITOR_KEYS[node.type];
if (keys) {
for (let i = 0; i < keys.length; i++) {
let key = keys[i];
let child = node[key];
check(child);
}
}
return result;
}
function predicate(node) {
getTypes().assertNode(node);
let meta = m(node);
if (hasOwn.call(meta, propertyName))
return meta[propertyName];
// Certain types are "opaque," which means they have no side
// effects or leaps and we don't care about their subexpressions.
if (hasOwn.call(opaqueTypes, node.type))
return meta[propertyName] = false;
if (hasOwn.call(knownTypes, node.type))
return meta[propertyName] = true;
return meta[propertyName] = onlyChildren(node);
}
predicate.onlyChildren = onlyChildren;
return predicate;
}
let opaqueTypes = {
FunctionExpression: true,
ArrowFunctionExpression: true
};
// These types potentially have side effects regardless of what side
// effects their subexpressions have.
let sideEffectTypes = {
CallExpression: true, // Anything could happen!
ForInStatement: true, // Modifies the key variable.
UnaryExpression: true, // Think delete.
BinaryExpression: true, // Might invoke .toString() or .valueOf().
AssignmentExpression: true, // Side-effecting by definition.
UpdateExpression: true, // Updates are essentially assignments.
NewExpression: true // Similar to CallExpression.
};
// These types are the direct cause of all leaps in control flow.
let leapTypes = {
YieldExpression: true,
BreakStatement: true,
ContinueStatement: true,
ReturnStatement: true,
ThrowStatement: true
};
// All leap types are also side effect types.
for (let type in leapTypes) {
if (hasOwn.call(leapTypes, type)) {
sideEffectTypes[type] = leapTypes[type];
}
}
exports.hasSideEffects = makePredicate("hasSideEffects", sideEffectTypes);
exports.containsLeap = makePredicate("containsLeap", leapTypes);

View file

@ -0,0 +1,82 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
import * as util from "./util";
// this function converts a shorthand object generator method into a normal
// (non-shorthand) object property which is a generator function expression. for
// example, this:
//
// var foo = {
// *bar(baz) { return 5; }
// }
//
// should be replaced with:
//
// var foo = {
// bar: function*(baz) { return 5; }
// }
//
// to do this, it clones the parameter array and the body of the object generator
// method into a new FunctionExpression.
//
// this method can be passed any Function AST node path, and it will return
// either:
// a) the path that was passed in (iff the path did not need to be replaced) or
// b) the path of the new FunctionExpression that was created as a replacement
// (iff the path did need to be replaced)
//
// In either case, though, the caller can count on the fact that the return value
// is a Function AST node path.
//
// If this function is called with an AST node path that is not a Function (or with an
// argument that isn't an AST node path), it will throw an error.
export default function replaceShorthandObjectMethod(path) {
const t = util.getTypes();
if (!path.node || !t.isFunction(path.node)) {
throw new Error("replaceShorthandObjectMethod can only be called on Function AST node paths.");
}
// this function only replaces shorthand object methods (called ObjectMethod
// in Babel-speak).
if (!t.isObjectMethod(path.node)) {
return path;
}
// this function only replaces generators.
if (!path.node.generator) {
return path;
}
const parameters = path.node.params.map(function (param) {
return t.cloneDeep(param);
})
const functionExpression = t.functionExpression(
null, // id
parameters, // params
t.cloneDeep(path.node.body), // body
path.node.generator,
path.node.async
);
util.replaceWithOrRemove(path,
t.objectProperty(
t.cloneDeep(path.node.key), // key
functionExpression, //value
path.node.computed, // computed
false // shorthand
)
);
// path now refers to the ObjectProperty AST node path, but we want to return a
// Function AST node path for the function expression we created. we know that
// the FunctionExpression we just created is the value of the ObjectProperty,
// so return the "value" path off of this path.
return path.get("value");
}

View file

@ -0,0 +1,45 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
let currentTypes = null;
export function wrapWithTypes(types, fn) {
return function (...args) {
const oldTypes = currentTypes;
currentTypes = types;
try {
return fn.apply(this, args);
} finally {
currentTypes = oldTypes;
}
};
}
export function getTypes() {
return currentTypes;
}
export function runtimeProperty(name) {
const t = getTypes();
return t.memberExpression(
t.identifier("regeneratorRuntime"),
t.identifier(name),
false
);
}
export function isReference(path) {
return path.isReferenced() || path.parentPath.isAssignmentExpression({ left: path.node });
}
export function replaceWithOrRemove(path, replacement) {
if (replacement) {
path.replaceWith(replacement)
} else {
path.remove();
}
}

View file

@ -0,0 +1,369 @@
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
"use strict";
import assert from "assert";
import { hoist } from "./hoist";
import { Emitter } from "./emit";
import replaceShorthandObjectMethod from "./replaceShorthandObjectMethod";
import * as util from "./util";
exports.getVisitor = ({ types: t }) => ({
Method(path, state) {
let node = path.node;
if (!shouldRegenerate(node, state)) return;
const container = t.functionExpression(
null,
[],
t.cloneNode(node.body, false),
node.generator,
node.async,
);
path.get("body").set("body", [
t.returnStatement(
t.callExpression(container, []),
),
]);
// Regardless of whether or not the wrapped function is a an async method
// or generator the outer function should not be
node.async = false;
node.generator = false;
// Unwrap the wrapper IIFE's environment so super and this and such still work.
path
.get("body.body.0.argument.callee")
.unwrapFunctionEnvironment();
},
Function: {
exit: util.wrapWithTypes(t, function(path, state) {
let node = path.node;
if (!shouldRegenerate(node, state)) return;
// if this is an ObjectMethod, we need to convert it to an ObjectProperty
path = replaceShorthandObjectMethod(path);
node = path.node;
let contextId = path.scope.generateUidIdentifier("context");
let argsId = path.scope.generateUidIdentifier("args");
path.ensureBlock();
let bodyBlockPath = path.get("body");
if (node.async) {
bodyBlockPath.traverse(awaitVisitor);
}
bodyBlockPath.traverse(functionSentVisitor, {
context: contextId
});
let outerBody = [];
let innerBody = [];
bodyBlockPath.get("body").forEach(function(childPath) {
let node = childPath.node;
if (t.isExpressionStatement(node) &&
t.isStringLiteral(node.expression)) {
// Babylon represents directives like "use strict" as elements
// of a bodyBlockPath.node.directives array, but they could just
// as easily be represented (by other parsers) as traditional
// string-literal-valued expression statements, so we need to
// handle that here. (#248)
outerBody.push(node);
} else if (node && node._blockHoist != null) {
outerBody.push(node);
} else {
innerBody.push(node);
}
});
if (outerBody.length > 0) {
// Only replace the inner body if we actually hoisted any statements
// to the outer body.
bodyBlockPath.node.body = innerBody;
}
let outerFnExpr = getOuterFnExpr(path);
// Note that getOuterFnExpr has the side-effect of ensuring that the
// function has a name (so node.id will always be an Identifier), even
// if a temporary name has to be synthesized.
t.assertIdentifier(node.id);
let innerFnId = t.identifier(node.id.name + "$");
// Turn all declarations into vars, and replace the original
// declarations with equivalent assignment expressions.
let vars = hoist(path);
let context = {
usesThis: false,
usesArguments: false,
getArgsId: () => t.clone(argsId),
};
path.traverse(argumentsThisVisitor, context);
if (context.usesArguments) {
vars = vars || t.variableDeclaration("var", []);
vars.declarations.push(t.variableDeclarator(
t.clone(argsId),
t.identifier("arguments"),
));
}
let emitter = new Emitter(contextId);
emitter.explode(path.get("body"));
if (vars && vars.declarations.length > 0) {
outerBody.push(vars);
}
let wrapArgs = [emitter.getContextFunction(innerFnId)];
let tryLocsList = emitter.getTryLocsList();
if (node.generator) {
wrapArgs.push(outerFnExpr);
} else if (context.usesThis || tryLocsList || node.async) {
// Async functions that are not generators don't care about the
// outer function because they don't need it to be marked and don't
// inherit from its .prototype.
wrapArgs.push(t.nullLiteral());
}
if (context.usesThis) {
wrapArgs.push(t.thisExpression());
} else if (tryLocsList || node.async) {
wrapArgs.push(t.nullLiteral());
}
if (tryLocsList) {
wrapArgs.push(tryLocsList);
} else if (node.async) {
wrapArgs.push(t.nullLiteral());
}
if (node.async) {
// Rename any locally declared "Promise" variable,
// to use the global one.
let currentScope = path.scope;
do {
if (currentScope.hasOwnBinding("Promise")) currentScope.rename("Promise");
} while (currentScope = currentScope.parent);
wrapArgs.push(t.identifier("Promise"));
}
let wrapCall = t.callExpression(
util.runtimeProperty(node.async ? "async" : "wrap"),
wrapArgs
);
outerBody.push(t.returnStatement(wrapCall));
node.body = t.blockStatement(outerBody);
// We injected a few new variable declarations (for every hoisted var),
// so we need to add them to the scope.
path.get("body.body").forEach(p => p.scope.registerDeclaration(p));
const oldDirectives = bodyBlockPath.node.directives;
if (oldDirectives) {
// Babylon represents directives like "use strict" as elements of
// a bodyBlockPath.node.directives array. (#248)
node.body.directives = oldDirectives;
}
let wasGeneratorFunction = node.generator;
if (wasGeneratorFunction) {
node.generator = false;
}
if (node.async) {
node.async = false;
}
if (wasGeneratorFunction && t.isExpression(node)) {
util.replaceWithOrRemove(path, t.callExpression(util.runtimeProperty("mark"), [node]))
path.addComment("leading", "#__PURE__");
}
const insertedLocs = emitter.getInsertedLocs();
path.traverse({
NumericLiteral(path) {
if (!insertedLocs.has(path.node)) {
return;
}
path.replaceWith(t.numericLiteral(path.node.value));
},
})
// Generators are processed in 'exit' handlers so that regenerator only has to run on
// an ES5 AST, but that means traversal will not pick up newly inserted references
// to things like 'regeneratorRuntime'. To avoid this, we explicitly requeue.
path.requeue();
})
}
});
// Check if a node should be transformed by regenerator
function shouldRegenerate(node, state) {
if (node.generator) {
if (node.async) {
// Async generator
return state.opts.asyncGenerators !== false;
} else {
// Plain generator
return state.opts.generators !== false;
}
} else if (node.async) {
// Async function
return state.opts.async !== false;
} else {
// Not a generator or async function.
return false;
}
}
// Given a NodePath for a Function, return an Expression node that can be
// used to refer reliably to the function object from inside the function.
// This expression is essentially a replacement for arguments.callee, with
// the key advantage that it works in strict mode.
function getOuterFnExpr(funPath) {
const t = util.getTypes();
let node = funPath.node;
t.assertFunction(node);
if (!node.id) {
// Default-exported function declarations, and function expressions may not
// have a name to reference, so we explicitly add one.
node.id = funPath.scope.parent.generateUidIdentifier("callee");
}
if (node.generator && // Non-generator functions don't need to be marked.
t.isFunctionDeclaration(node)) {
// Return the identifier returned by runtime.mark(<node.id>).
return getMarkedFunctionId(funPath);
}
return t.clone(node.id);
}
const markInfo = new WeakMap();
function getMarkInfo(node) {
if (!markInfo.has(node)) {
markInfo.set(node, {});
}
return markInfo.get(node);
}
function getMarkedFunctionId(funPath) {
const t = util.getTypes();
const node = funPath.node;
t.assertIdentifier(node.id);
const blockPath = funPath.findParent(function (path) {
return path.isProgram() || path.isBlockStatement();
});
if (!blockPath) {
return node.id;
}
const block = blockPath.node;
assert.ok(Array.isArray(block.body));
const info = getMarkInfo(block);
if (!info.decl) {
info.decl = t.variableDeclaration("var", []);
blockPath.unshiftContainer("body", info.decl);
info.declPath = blockPath.get("body.0");
}
assert.strictEqual(info.declPath.node, info.decl);
// Get a new unique identifier for our marked variable.
const markedId = blockPath.scope.generateUidIdentifier("marked");
const markCallExp = t.callExpression(
util.runtimeProperty("mark"),
[t.clone(node.id)]
);
const index = info.decl.declarations.push(
t.variableDeclarator(markedId, markCallExp)
) - 1;
const markCallExpPath =
info.declPath.get("declarations." + index + ".init");
assert.strictEqual(markCallExpPath.node, markCallExp);
markCallExpPath.addComment("leading", "#__PURE__");
return t.clone(markedId);
}
let argumentsThisVisitor = {
"FunctionExpression|FunctionDeclaration|Method": function(path) {
path.skip();
},
Identifier: function(path, state) {
if (path.node.name === "arguments" && util.isReference(path)) {
util.replaceWithOrRemove(path, state.getArgsId());
state.usesArguments = true;
}
},
ThisExpression: function(path, state) {
state.usesThis = true;
}
};
let functionSentVisitor = {
MetaProperty(path) {
let { node } = path;
if (node.meta.name === "function" &&
node.property.name === "sent") {
const t = util.getTypes();
util.replaceWithOrRemove(
path,
t.memberExpression(
t.clone(this.context),
t.identifier("_sent")
)
);
}
}
};
let awaitVisitor = {
Function: function(path) {
path.skip(); // Don't descend into nested function scopes.
},
AwaitExpression: function(path) {
const t = util.getTypes();
// Convert await expressions to yield expressions.
let argument = path.node.argument;
// Transforming `await x` to `yield regeneratorRuntime.awrap(x)`
// causes the argument to be wrapped in such a way that the runtime
// can distinguish between awaited and merely yielded values.
util.replaceWithOrRemove(path, t.yieldExpression(
t.callExpression(
util.runtimeProperty("awrap"),
[argument]
),
false
));
}
};